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Nonlinear behavior in the amplifier of embedded audio
systems remains a challenge in acoustic echo control. Echo
cancellation or suppression methods are usually evaluated
using the well-known echo return loss enhancement as a
performance measure and the equally well-known total
harmonic distortion to characterize the severity of the
system’s nonlinear distortion. However, the latter fails to
capture nonlinear behavior under excitation signals with
amplitude and frequency distributions different from that
of a simple sine wave.

We propose a novel nonlinearity measure and examine
its usefulness in different scenarios in relation to existing
measures.

Also, we present an appropriate procedure that comprises
the measurements and calculations necessary to determine
the proposed measure. Finally, data obtained from an
example measurement series are presented and discussed.

1 Introduction

While several metrics for the severity of nonlinear behavior
exist [1], their usefulness depends on the intended applica-
tion.

The well-known total harmonic distortion (THD), and
its more practically-motivated counterpart total harmonic
distortion including noise (THD+N), can reflect a system’s
harmonic distortion given a fixed frequency. Usually, a
sine signal at a base frequency of 𝑓0 = 1000 Hz is used as
the excitation signal, and its amplitude is either constant
or swept over a range of interest. The result is a distortion
factor obtained from multiples of the base frequency.

Broadband measures like the signal-to-distortion power
ratio (SDR) mentioned in [1] exist, which allow arbitrary
excitation signals and take into account any type of distor-
tion. They are usually designed to explain the measured
signal linearly to the greatest extent possible, while the
remnants are defined as the nonlinear part. Their respec-
tive powers are compared to obtain a characteristic for
the amount of distortion introduced by a system given a

specific excitation signal.
It is obvious that systems with a frequency-independent

nonlinear behavior can be adequately described with simple
THD class measurement, while systems with more com-
plicated types of nonlinear behavior require a broadband
measurement.

A special case, where higher harmonics are reflected at
the Nyquist frequency, is covered by the THD+N approach.
In the case that these harmonics are attenuated by an
antialiasing filter for strong distortions, this slips the notice
of both THD measures. This can lead to an apparent, but
erroneous, decrease in THD for very high amplitudes.

In acoustic echo control (AEC) scenarios, the acoustic
channel, as a part of the measurement path, generally
exhibits an uneven frequency response. Sound reflections
can lead to destructive interference at certain frequencies.
It is therefore advisable to utilize broadband measures in
these cases.

In [2], a measure was introduced that turns out to be
appropriate for the problem at hand.

1.1 Model Definition

It is common to assume a parallel model for the separation
of linear and nonlinear system components [1]. One degree
of freedom remains that determines what is considered the
linear system’s output and hence, the nonlinear system’s
output as well.

Schüßler [3] separates both parts by defining their respec-
tive output signals to be uncorrelated. While this approach
is favorable for the tractability of theoretical analyses, it
has no underlying physical model: the linear subsystem
explains the whole system’s output as good as possible,
which is a consequence of the well-known minimum mean
square error (MMSE) approach.

We describe a different separation approach that is based
on the observation that typical weakly nonlinear systems
exhibit adequate linear behavior up to a certain excitation
signal amplitude.

It is our basic idea that if a system is linear then its
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Figure 1: Echo path model. A parallel stage with linear
and nonlinear subsystems in cascade with a linear
room impulse response. The reference signal 𝑥
is processed by both subsystems, resulting in
a linear portion 𝑥lin, and a nonlinear portion
𝑥nl. Their sum is the distorted reference signal
𝑥dis. Convolution with a common room impulse
response ℎ results in the echo signal 𝑑. Addition
of local noise 𝑏 yields the measurement signal 𝑦.
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2 , where 𝑥(𝜈) := 𝑎(𝜈)𝑥ref (1)

must necessarily be invariant to an arbitrary amplitude
scaling factor 𝑎. Here, we disregard measurement noise.

We can use this to define any deviation to be a result of
the system’s nonlinear portion. Additionally, we arbitrarily
choose the linear parallel path to be neutral, that is:

𝑥lin := 𝑥 ⇒ 𝑥nl = 𝑥dis − 𝑥, (2)

thus necessarily modifying the definition of the cascaded
room impulse response ℎ, the modification of which we
now call ℎ̃ [2].

2 Determination of the Linear
Operating Range

Typically, weakly nonlinear systems exhibit linear behavior
at sufficiently low amplitudes up to measurement precision.
Beyond a certain amplitude, nonlinear behavior sets in
gradually or abruptly. However, at very low amplitudes,
the signal-to-noise power ratio (SNR) deteriorates due to
a constant background and measurement noise. Hence,
completely clean measurements cannot be obtained.

2.1 Principle

By measuring the system’s energy response over the full
amplitude range, a coarse demarcation of these areas is
obtained. Figure 2 shows a typical energy return curve
with a pole around zero amplitude documenting low SNR,
a constant range marking linear operation, and a downward
bend, which indicates clipping characteristics.

2.2 Measurement Signal

It is advisable to use a broadband signal as the excitation
or reference signal, since a frequency dependent nonlinear
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Figure 2: Relative energy return for low noise power with
outliers. Energies are normalized by 𝐸0 at a po-
sition chosen in the flat curve range. An example
amplitude in the obvious linear range between
low SNR and nonlinear clipping is marked with
a vertical line.

behavior might be present. Moreover, because saturation
effects are a commonly encountered type of nonlinearity, a
signal with a well-defined amplitude interval is desirable.
Inter-sample peaks are inherent to many analog signals gen-
erated from digital signals like random or pseudo-random
sequences. Amplifier saturation is usually triggered by
the presence of high analog amplitudes. It is therefore
inconvenient to characterize this nonlinear behavior with
such signals. Conversely, an interpolated digital sine signal
never exceeds its nominal amplitude, even for frequencies
near the Nyquist frequency.

Hence we choose an exponential sine frequency sweep
for a number of equidistant amplitudes in the range from
zero to digital full scale. As Weinzierl et al. [4] state, the
sweep’s shape has a possible effect on SNR depending on
the type of background noise. Its power spectral density
(PSD) also constitutes a frequency weighting of the assessed
nonlinear effects. An exponential shape has a pink spectral
magnitude distribution and was chosen to emphasize these
effects according to naturally occurring signals, such as
speech.

2.3 Procedure

The reference signal 𝑥(𝑛) is generated at a sample frequency
𝑓s with at least 16 bits amplitude resolution. Each sweep
ranges from 𝑓0 to the Nyquist frequency 𝑓Ny = 𝑓s/2 and
takes ∆𝑡sweep to complete. A pause of duration ∆𝑡pause is
allowed between individual sweeps. We divide the available
symmetric digital amplitude scale (for 16 bits signed integer
resolution, this would be 𝑎min = −215 + 1 to 𝑎max =
+215 − 1) into a number 𝑛𝑎 of equidistant amplitudes:

𝑎(𝜈) :=
𝜈

𝑛𝑎
𝑎max for all 𝜈 ∈ [1, 𝑛𝑎] ∩ N. (3)

All parameters should be chosen according to the situ-
ation at hand. For example, the pause duration ∆𝑡pause
should allow for the longest expected room response, and
the sweep duration ∆𝑡sweep should be extended if higher
background noise is expected.
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After recording the signals, an energy return curve plot
as in figure 2 provides information about the linear and
nonlinear ranges of the device under test (DUT): Linear
operation at low amplitudes exhibits a flat return curve,
while the energy return might decay for higher amplitudes
due to clipping. A reference amplitude 𝑎ref with corre-
sponding index 𝜈ref is chosen from the higher linear range
to provide linear operation at a good SNR.

3 Linear System Identification

The linear system part can be identified by performing
measurements at the chosen reference amplitude 𝑎ref.

This measurement can either be performed as a separate
step after the linear operating range has been determined,
or the previous measurement can be performed with the
signal described below simultaneously.

As described in [3], a robust way to identify a linear
system is to use a full-band periodic excitation signal

𝑥per :=
[︀
𝑥T, . . . , 𝑥T

]︀T
, (4)

where

𝑥 := [𝑥0, . . . , 𝑥𝑁−1]
T

(5)

is an exponential sine sweep signal of length 𝑁 = 2𝑚,
𝑚 ∈ N and amplitude 𝑎ref. The excitation signal 𝑥per is
then a 𝑃 -periodic signal of length 𝑁𝑃 . A synchronous
measurement provides the microphone signal 𝑦, which we
partition accordingly:

𝑦
𝑝

:=
[︀
𝑦𝑝𝑁 , . . . , 𝑦(𝑝+1)𝑁−1

]︀T
. (6)

Barring the first and last partitions, and not taking
measurement noise into account, the partitions are periodic.
We reduce random uncorrelated noise by averaging the
partitions:

𝑑 :=
1

𝑃 − 2

𝑃−2∑︁
𝑝=1

𝑦
𝑝
. (7)

The system’s transfer function ℎ can then be estimated
using this estimate and a single excitation period in the
discrete Fourier domain:

𝑋𝑘 := FFT(𝑥)𝑘, �̂�𝑘 := FFT(𝑑)𝑘, (8)

�̂� : �̂�𝑘 :=
�̂�𝑘

𝑋𝑘
, (9)

where 𝑘 is the sub-band index.

Due to the signal’s periodic nature, the sample-domain
room impulse response (RIR) can be directly obtained by
an inverse discrete Fourier transform:

ℎ̂ : ℎ̂𝑛′ := IFFT(�̂�)𝑛′ , (10)

where 𝑛′ is the filter tap.

This RIR estimate is later used in its discrete Fourier
domain only.

4 Nonlinear System Assessment

Having identified the purely linear system, we can now
construct would-be linear system responses 𝑑, which would
be observed if the whole system were linear. Any deviation
from these predictions is classified as contribution of the
nonlinear sub-system as described in figure 1.

We use or re-use excitation signals 𝑥 scaled by a set of
equidistantly distributed amplitudes 𝑎(𝜈) as defined in (3):

𝑥(𝜈) := 𝑎(𝜈)𝑥, (11)

as well as the corresponding measurements 𝑦(𝜈). We then

define the linearly predicted signal 𝑑
(𝜈)

, which should be
proportional to the excitation amplitude, for each ampli-
tude index 𝜈:

𝑑
(𝜈)

:=
𝑎(𝜈)

𝑎ref
𝑦(𝜈

ref). (12)

Here, we rely on the reference amplitude 𝑎ref and corre-
sponding index 𝜈ref obtained in section 2.

We can then calculate the nonlinear sub-system’s re-
sponse after convolution with the RIR in the discrete
Fourier domain:

𝑌
(𝜈)

nl := 𝑌 (𝜈) − �̂�
(𝜈)

. (13)

Also, by approximately inverting the RIR’s amplitude re-
sponse, we get an estimate for the nonlinear path’s direct
output PSD:

Φ̂
𝑋

(𝜈)
nl ,𝑘

:=

⃒⃒⃒
𝑌

(𝜈)
nl,𝑘

⃒⃒⃒2
max

(︂
𝜖,
⃒⃒⃒
�̂�𝑘

⃒⃒⃒2)︂ , (14)

where 𝜖 is a regularization term.
Finally, we estimate the reference-to-nonlinear power

ratio (RNLR) per amplitude as defined in [2]:

R̂︁NLR(𝜈) :=

∑︀𝑁−1
𝑘=0 Φ𝑋(𝜈),𝑘∑︀𝑁−1
𝑘=0 Φ̂

𝑋
(𝜈)
nl ,𝑘

, (15)

where the reference PSD is:

Φ𝑋(𝜈),𝑘 :=
⃒⃒⃒
𝑋

(𝜈)
𝑘

⃒⃒⃒2
. (16)

The RNLR characterizes the amount of distortion in
the distorted excitation signal 𝑥dis. High values indicate
near-linear behavior, while low values result from strong
nonlinear distortions.

5 Results

We performed the described measurements in a reverberant
workshop with both stationary and occasional transient
noise. Repeated measurements allowed for robust results.
The DUT was a 12 W consumer grade audio amplifier
driven at its specified line level on one channel. The ampli-
fier was known to produce distorted signals at high levels
and was consistently set to maximum volume. A DI box
was utilized to attenuate the amplifier’s output power down
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Figure 3: RNLR as a function of the excitation amplitude.
The solid line is calculated from actual measure-
ments, while the dashed line is generated from
a digitally clipped sine signal, to which artificial
random noise was added. The clipping threshold
𝑎clip = 0.28 is indicated by a vertical line.

to line level and feed it to an active loudspeaker. The au-
dio signal was picked up by a commercial-grade condenser
microphone at a distance of approximately 2 meters from
the loudspeaker. Synchronous recordings were achieved by
digitally looping back the excitation signal in the sound-
card and recording both microphone and reference channels
synchronously.

The RNLR curve plotted in figure 3 describes a flat bank
in the lower amplitude range and a strong bend downwards
at a medium amplitude. It then continues to approach
zero RNLR.

This behavior can be explained with amplifier clipping
as is demonstrated by the analysis of an artificially clipped
signal also shown in figure 3. An RNLR of zero corresponds
to “full clipping”, that is, complete deletion of the signal.
In this case, the deviation power is equal to the reference
power, hence, the power ratio is zero decibels. Inaccuracies
can result from any type of deviation from perfectly linear
behavior. This includes background noise, the effects of
which can be controlled if its PSD is known beforehand, as
described above. Limited precision of the estimated RIR
is detrimental, but this is mitigated by robust periodic

excitation and adequate filter length. Zeros in the inverted
RIR PSD can limit the precision of the nonlinear excitation
signal power estimate in (14).

As shown in [2], the RNLR is a useful parameter, along-
side SNR and echo-to-noise power ratio (ENR), for compar-
ing operating conditions in echo control scenarios. It is an
advantage that the excitation signal can be tailored to re-
flect a desired PSD. Moreover, the RNLR is also invariant
to the RIR to some extent. It can therefore help to make
different algorithms’ echo return loss enhancement (ERLE)
performance comparable under different scenarios without
the need for different researchers to use the exact same
excitation signals. This cannot generally be done with a
THD measure alone.

6 Conclusion

We introduced a novel measurement method useful for
characterizing nonlinear behavior of the amplifier or loud-
speaker in acoustic echo control scenarios. Through proper
design, it is capable of identifying the room impulse re-
sponse as well as nonlinear effects in a single measurement
session. The RNLR characteristic benefits from robust
room identification and can be used to numerically com-
pare, characterize, or specify, for example, hands-free tele-
phony scenarios with echo cancellation.
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[3] H. W. Schüßler and Y. Dong, “A new method for mea-
suring the performance of weakly nonlinear systems,”
in Proc. of ICASSP, 1989, pp. 2089–2092.

[4] S. Weinzierl, A. Giese, and A. Lindau, “Generalized
Multiple Sweep Measurement,” in 126th AES Conven-
tion. Audio Engineering Society, 2009.

DAGA 2017 Kiel

540


