Article details

Research area
Speech recognition

Location
Proceedings of LVA/ICA 2015, Liberec, Czech Republic

Date
2015

Author(s)
Felix Weninger, Hakan Erdogan, Shinji Watanabe, Emmanuel Vincent, Jonathan Le Roux, John R. Hershey, Björn Schuller

Speech Enhancement with LSTM Recurrent Neural Networks and its Application to Noise-Robust ASR

Synopsis:

We evaluate some recent developments in recurrent neural network (RNN) based speech enhancement in the light of noise-robust automatic speech recognition (ASR). The proposed framework is based on Long Short-Term Memory (LSTM) RNNs which are discriminatively trained according to an optimal speech reconstruction objective. We demonstrate that LSTM speech enhancement, even when used ‘naively’ as front-end processing, delivers competitive results on the CHiME-2 speech recognition task. Furthermore, simple, feature-level fusion based extensions to the framework are proposed to improve the integration with the ASR back-end. These yield a best result of 13.76% average word error rate, which is, to our knowledge, the best score to date.
Read/download now