research category image

Speech recognition

Turning speech into text is at the heart of an amazing variety of products and services that enrich peoples’ lives. Most of the world’s successful speech solutions today have Nuance speech technology inside.

research category image

Speech recognition

Our goal: Near-perfect speech recognition for everybody in the world.
Nuance has been a pioneer in speech and language technologies for more than 30 years. Our data centers host billions of speech transactions every month in over 40 languages from hundreds of applications. We continuously expand our research grid to explore this avalanche of data. Our researchers, experts in the fields of speech recognition, statistical modeling, deep machine learning, and linguistics, use these computational and data resources to continuously advance the boundaries of what can be done with speech technology.

Current applications for consumers and companies.
We optimize our technology for four main application scenarios.

– Our personal assistant solutions enable people to communicate with their devices on human terms. Our systems understand people’s intentions and provide appropriate responses. Drivers operate their GPSs, make phone calls and listen to messages using our robust speech solutions. Speech makes these interactions easier and safer. In that sense, speech technology saves lives. We continuously improve our accuracy, latency, and robustness; and extend our models to new domains, accents, languages, and devices.

– Our document creation solution powers Dragon NaturallySpeaking, the Nuance flagship speech recognition product. We develop a highly personalized speech recognition solution for each user without explicit training. Our solution not only transcribes accurately the words people dictate, but also formats the resulting written documents.

– Medical professionals use our dictation solutions to generate millions of reports every day. We offer both “front-end” solutions, where doctors see and correct reports as they dictate, and “back-end” solutions, where users speak into a microphone, and are later presented with corrected, formatted reports for signature.

– Most spoken communication takes place between people. Our transcription solution accurately converts the spoken words in conversational speech, particularly voicemails, into text. We focus our research on particular challenges in conversational speech, e.g. sloppy formulation and articulation, difficult recording conditions, multiple speakers, and unpredictable content.

Our solutions are implemented in server-based systems, embedded systems, and hybrid systems that use both server and embedded components. We work closely with our hosted operations and frequently roll out new algorithms and models

Where we’re headed next
Here are some representative examples of the problems we research:

  • Acoustic modeling 
    Neural Nets, and particularly “Deep” Neural Nets, provide substantial performance improvements for many speech recognition tasks. Our work around NNs covers network architectures (e.g. DNN, CNN, RNN/LSTM), input features, training algorithms (parallelization, sequence training), and runtime optimizations (and of course other issues). DNNs require well-labeled data and are hard to adapt to new speakers, devices, and acoustic conditions. So we are also interested in using our large corpora of unlabeled data in many languages for DNN training, and in rapidly adapting DNNs for new acoustic conditions.
  • Language modeling
    Recent years have witnessed a loosening of the death-grip of Kneser-Ney (KN) NGram models on state of the art language modeling, with exponential class models (aka Model M) and more recently various large-scale continuous space language models (aka Feed-Forward NN, RNN, LSTM) achieving superior perplexity and word error rate performance over a range of tasks. The recurrent version of these neural models drop the long-held NGram Markov approximation altogether. The gains in performance with these “new” models come with the cost of a significant increase in training times as compared to KN models. Meanwhile cloud-based dictation services have opened the floodgates of (unsupervised) in-domain training data, which KN models are only too happy to consume and benefit from. This presents an interesting challenge: what decisions about model architecture, training implementation and infrastructure (e.g. CPU, GPU, CPU cluster, multiple GPUs), objective function, parameter initialization, optimization method, data selection, and model combination lead to the best performing model within a practical timeframe robustly across application domains? When theory and engineering collide, the most interesting problems are born. We’re having fun solving these problems every day (but don’t worry, there are still a few left).
  • Research engineering
    The research engineering department’s goal is to turn complex algorithms into efficient, robust software. We create and maintain well-engineered toolkits that support researchers’ flexibility to create and test new algorithms, and we create engines and models which support products and applications in over 40 languages. Our customers range from a single researcher trying something new, to millions of users running Nuance products on their own devices or recognition services provided by our data centers. Our model training toolkit runs on our dedicated large-scale computing grid, and our engines run on anything from the smallest devices to large cloud servers.

Explore recent publications by Nuance Speech Recognition researchers.

Selected articles

Spectral estimation and normalisation for robust speech recognition

Speech recognition in adverse conditions remains a difficult but challenging problem. It has already been shown that normalization of the dynamic range (SNR) of the

Read more

Reduced semi-continuous models for large vocabulary continuous speech recognition in Dutch

Semi-continuous Density HMM’s have – due to the decoupling between the set of gaussians and the other HMM-parameters – more possibilities than Continuous Density HMM’s

Read more

SNR-normalisation for robust speech recognition

A new normalization technique for speech recognition in adverse conditions is presented. Specifically the influence of additive noise in combination with convolutive distortions is considered.

Read more

Automatic modeling of user specific words for a speaker independent recognition system

The problem addressed in this paper, is the incorporation of user specific words in a speaker independent speech recognition system. No transcription is used to

Read more

Improvements in switchboard recognition and topic identification

We revisit a topic identification test on the Switchboard Corpus first reported by Gillick et al. (see Proc. ICASSP-93, 1993 and ARPA Workshop on Human

Read more

Statistische modellen helpen spraak herkennen
On the importance of the microphone position for speech recognition in the car

One of the problems with speech recognition in the car is the position of the far talk microphone. This position not only implies more or

Read more

Pseudo-segment based speech recognition using neural recurrent whole-word recognizers

Describes a recurrent neural network based, isolated word speech recognizer. The recognizer uses 2 MLPs. A first, static MLP is used for classification of frames

Read more

1 16 17 18

Upcoming events

Interspeech 2017
- August 24

Nuance is a sponsor of Interspeech 2017 and several Nuance researchers will be attending. Come and meet us there!

See all Research events